Lactose intolerance is one example of food intolerance. The term "food intolerance" denotes a non-immunologic adverse reaction to a food.
In the case of lactose intolerance it is due to an inability to digest significant amounts of lactose, the predominant sugar of milk. This inability results from a shortage of the enzyme lactase, which is normally produced by the cells that line the small intestines. Lactase breaks down milk sugar into simpler forms that can be absorbed into the blood stream.
Congenital Lactase Deficiency
This is a rare condition (less than 50 cases are known) in which the individual cannot produce lactase. Watery diarrhoea occurs after breast-feeding or milk ingestion.
Primary (Late-onset) Lactase Deficiency
Lactase levels are high in all mammals following birth. In most mammals, however, lactase levels decline after the infant is weaned. Man is the only mammal that may retain lactase activity into adulthood. The gradual lactase disappearance usually does not begin until the child reaches pre-school age (2-6 years), although it can also begin at virtually any time later in life. The timing and rate of decline is genetically determined.
The ability of adults to drink milk is known as lactase persistence. Lactase persistence is mainly confined to northwest Europeans and certain African subpopulations. This was a survival trait from times of meat famine, when milk was required as a rich source of protein and the gene for lactase persistence was passed along. These groups include the Germans and British, who engaged in cattle farming and dairying by the late first millennium AD.
Primary lactase deficiency is mostly seen in those racial/geographic groups whose ancestors did not drink milk as a nutrient. Groups that cannot usually digest milk include people from:
" Africa
" East & South Asia
" Pacific & Mediterranean Countries
" Native Americans
" Jews & Eskimos
Secondary Lactase Deficiency
This type of lactase deficiency is secondary to a medical problem or use of certain therapies. For instance, an episode of acute infectious diarrhoea (gastroenteritis) can leave the patient lactase deficient through damage and temporary loss of the relatively shallow intestinal villous section of the intestine. While other enzymes (eg, sucrase and maltase) may be affected, lactase is the earliest to be lost and the slowest to regenerate. Average recovery time is 4 weeks.
HIV infection can cause lactase deficiency, as do rotavirus and giardiasis.
Drugs, like Neomycin, Kanamycin, tetracycline and Methotrexate can cause villous atrophy, leading to secondary lactase deficiency.
Alcohol can also inhibit disaccharidases (lactase & others enzymes) and cause or worsen a lactase deficiency.
Prevalence
It is estimated that 25% of Americans and 75% of adults worldwide have lactose intolerance.
81% of black adults and 100% of Asian adult have this problem.
Age
Age is predictive of LA. At least 46% of those over 50 have the problem, in contrast to only 25% of those under the age of 50.
Sex
Both affected equally.
Inheritance
Autosomal recessive single gene inheritance. Therefore, having 2 parents with lactose intolerance virtually guarantees that the children will develop the disorder.
Symptoms
Two main reasons for symptoms.
Undigested lactose acts as an osmotic laxative. This leads to diarrhoea and abdominal pain.
Intestinal bacteria are able to use lactose as a growth substrate. The rapid growth of intestinal bacteria leads to the production of large volumes of gas. The gas is responsible for the flatulence, dyspepsia, abdominal distension and stomach rumbling.
Vomiting, which is a common feature of milk allergy, is rare in lactose intolerance.
Diagnosis
The age of presentation is usually after two, in contrast with cows milk allergy that usually manifests during breast-feeding or shortly after weaning.
Often in LA the patient can tolerate small amounts of some dairy products whereas in milk allergy even traces of any will cause symptoms.
Lactose elimination & lactase supplementation (in the form of tablets or liquid) will usually differentiate this problem from milk allergy.
Fermentation of lactose produces hydrogen as a by-product. Breath hydrogen excretion can be measured after a lactose challenge, and compared with baseline.
Treatment of Lactose Intolerance
Dietary Modification
Since milk allergy can be life-threatening even in trace amount, it is important to differentiate lactose intolerance (which is not life-threatening) from milk allergy.
Very few people are so lactase deficient that the remedy is total restriction of dietary lactose. The disorder is often dose-dependent. Many adults with primary lactose deficiency can drink 100ml 200ml of milk (5g 10g of lactose) without having symptoms. However, a little too much causes mild symptoms and a great deal of excess lactose cause severe symptoms.
The severity of symptoms is product-dependent for many patients as well. Skim milk causes more severe symptoms than whole milk. Chocolate milk may help the condition. These differences are attributed to the fat content, osmolality and the delayed gastric emptying augmented by additional ingredients in the different products. In one study milk with breakfast cereals prevented symptoms completely.
Lactase supplementation
There are several ways of giving lactase.
Yoghurt has lactase activity. Lactase enzymes are available without a prescription. One form is a liquid to add to milk. A few drops are added to milk, and then after 24 hours in the refrigerator, the lactose is reduced by 70%.
There are also chewable lactase tablets that help people digest solid foods that have lactose.
Infants and young children can have dairy based lactose-free formulas or non-dairy formulas like soy.
SPT is especially accurate in the young child with immediate (type 1) reaction. The skin is pricked through a small drop of milk placed on the forearm. A wheal and flare reaction after 15 minutes will indicate that the patient is allergic to milk.
The positive predictive accuracies of SPTs are less than 50% compared with DBPCFCs, whereas negative SPT responses virtually exclude IgE-mediated reactions (negative predictive accuracy is greater than 95%)
Nearly 60% of milk reactions in the young child are the delayed type (intolerant, non-immunologic) and therefore unlikely to give positive results.
The diagnosis is then made by the Elimination-Challenge Test. This should show the relief of symptoms on the removal of milk and the recurrence of symptoms when re-introduced. This test should never be done at home. It should be done under the supervision of the doctor and the dietitian.
An open challenge and careful follow-up may be adequate for practical clinical purpose to diagnose the Type 1 (Immediate) Milk Reactions.
Milk is applied to the back in a special Finn chamber for 48 hours. A positive response suggests a delayed hypersensitivity & is useful in intermediate & delayed milk reactions.
In one study of patients with atopic dermatitis, it was demonstrated that Patch Testing could identify many patients with negative skin prick test and delayed clinical reactions. Parallel skin testing with combined prick and patch tests can significantly enhance the accuracy of specific food allergies in patients with atopic dermatitis.
The CAP RAST is newer & more accurate than the RAST. It tests for milk proteins as whole, or individual fractions of milk (casein, whey, beta-lactoglobulin).
A recent study with CAP RAST in children with atopic dermatitis showed that the positive predictive value for milk, if the level is above 32 kuA/l is 95%. Therefore for results above 32kUA/l a DBPCFC is not warranted.